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Uniform Spanning Tree

G = (V ,E ) connected graph

A spanning tree T :
connected cycle-free subgraph of G

Definition
Given weights w : E → R+, the uniform spanning tree (UST) is the
random spanning tree T on (G ,w) such that

Pw (T = T ) =
1
Z

∏
e∈T

we

with Z = Z (w) :=
∑

T

∏
e∈T we .
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Generating USTs

Naively Sampling
Generate all spanning trees and pick one according to its weight.

UST on (G ,w) ↔ Random Walks on (G ,w)

Aldous-Broder Algorithm
Run a weighted random walk until all vertices are visited. Whenever a
vertex is visited for the first time, add the edge to T .

Wilson’s Algorithm
Set T = {v} for some v ∈ V . Choose u /∈ T ; run weighted loop erased
random walk from u until touching T ; add trajectory to T .
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Maximum Spanning Tree

Definition
Given weights w : E → R+ all different, the maximum spanning tree
(MST) is the (non-random) spanning tree T that maximizes∑

e∈T
we

How to generate it?

Prim’s Algorithm
Set T = {v} for some v ∈ V . Consider all edges joining T to its
complement and add the one with the largest weight. Iterate.

Kruskal Algorithm
Start from a forest of |V | isolated vertices. Add the edge of largest weight
joining two distinct components of the current forest. Iterate.
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Are the UST and the MST different?

UST MST

Simulations on random 3-regular graph, |V | = 100000, we = (U[0, 1])−1 (by Luca Makowiec)

On the complete graph G = Kn:
UST MST

Diameter n1/2 n1/3

Scaling limit UST
n1/2 → Aldous’ CRT MST

n1/3 →M
[Aldous ’91] [Addario-B. et al. ’17]
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Diameter of UST

Theorem (Extension of Michaeli, Nachmias and Shalev ’21)

Suppose (G ,w) is

1 balanced: maxu∈V π(u)

minu∈V π(u)
=

maxu∈V
∑

v w(u,v)

minu∈V
∑

v w(u,v)
≤ D;

2 mixing: tmix(G ,w) ≤ n
1
2−α ;

3 escaping: tmix∑
t=0

(t + 1) sup
v∈V

pt(v , v) ≤ θ .

Then ∀ε > 0 exists c = c(ε,D, α, θ) such that

Pw
(
c−1n1/2 ≤ diam(T ) ≤ c n1/2

)
≥ 1− ε.

UST on “high-dimensional” graphs with elliptic weights have diameter n1/2:

Examples: complete graph, expanders, high-dimensional torus...
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General weights

What happens if the weights are non-elliptic?

Theorem (Makowiec, S., Sun ’23)

Let G = (V ,E ) with |V | = n be either
an expander with max degree ∆ <∞ ;
a torus in d ≥ 5.

Let we i.i.d. with µ such that µ(0,∞) = 1.

Then ∃c > 0 such that for all ε > 0

EPw
( n1/2

(ε−1 log n)c
≤ diam(T ) ≤ (ε−1 log n)cn1/2

)
≥ 1− ε .

where E is the expectation w.r.t. w .

Michele Salvi (Tor Vergata) RSTRE 7 / 16



General weights

What happens if the weights are non-elliptic?

Theorem (Makowiec, S., Sun ’23)

Let G = (V ,E ) with |V | = n be either
an expander with max degree ∆ <∞ ;
a torus in d ≥ 5.

Let we i.i.d. with µ such that µ(0,∞) = 1.

Then ∃c > 0 such that for all ε > 0

EPw
( n1/2

(ε−1 log n)c
≤ diam(T ) ≤ (ε−1 log n)cn1/2

)
≥ 1− ε .

where E is the expectation w.r.t. w .

Michele Salvi (Tor Vergata) RSTRE 7 / 16



Sketch of proof

1 Perform percolation on G with parameter p = µ( 1
A ,A), where A is

large enough so that p is close to 1.
2 Obtain G ′ conditioning on the realization of T on closed edges:

I delete closed edges not in T ;
I contract closed edges in T .

G G ′
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3 Verify (G ′,w ′) is balanced, mixing and escaping (use isoperimetric
constant/profile) and apply [Michaeli, Nachmias, Shalev] with
polylogarithmic parameters to obtain

diam(G ′) ≈ |V ′|1/2 ≈ n1/2.

4 Uncontract to obtain diameter bounds on G :
I Lower bound: Paths in G can only get longer.
I Upper bound: Each vertex in G ′ consists of at most log n contracted

vertices of G =⇒ paths in G are at most log n times longer.
�

Counterexample on complete graph
Take G = Kn and µ heavy tailed enough. Then

EPw
(
T = MST

)
n→∞−−−→ 1 .

In particular diam(T ) ≈ n1/3.

Idea: weight of 2nd heaviest spanning tree is “super exponentially” smaller
than MST.
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Random Spanning Tree in Random Environment

Definition
Let G = (V ,E ) connected graph.
Let (ωe)e∈E i.i.d. Unif ([0, 1]) and let β ≥ 0. Assign weights

we = eβωe .

The Random Spanning Tree in Random Environment (RSTRE) has law

Pωβ (T = T ) =
1
Zωβ

∏
e∈T

eβωe .

CASE β = 0 (Weights deterministic, Tree random)
RSTRE is the UST. For G = Kn diameter n1/2.

CASE β =∞ (Weights random, Tree deterministic)
RSTRE is the MST. For G = Kn diameter n1/3.

Can we interpolate by taking β = βn?
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Low Disorder

Theorem (Makowiec, S., Sun ’24)
Let G = Kn. There exists a constant C such that if

βn ≤ C
n

log n

then for every δ > 0 there exists c = c(δ) > 0 such that

EPωβn
(
c−1n1/2 ≤ diam(T ) ≤ c n1/2

)
≥ 1− δ .

Proof idea: Check the conditions of [Michaeli, Nachmias, Shalev].
Concentration inequalities =⇒ balanced and isoperimetric profile;
Cheeger inequalities + heat kernel estimates =⇒ mixing and escaping.

Observations
Extends to expanders with dmax

dmin
≤ C for βn ≤ Cdmin/ log n.

For βn � n proof fails: tmix becomes very large (traps).

Michele Salvi (Tor Vergata) RSTRE 11 / 16



Low Disorder

Theorem (Makowiec, S., Sun ’24)
Let G = Kn. There exists a constant C such that if

βn ≤ C
n

log n

then for every δ > 0 there exists c = c(δ) > 0 such that

EPωβn
(
c−1n1/2 ≤ diam(T ) ≤ c n1/2

)
≥ 1− δ .

Proof idea: Check the conditions of [Michaeli, Nachmias, Shalev].
Concentration inequalities =⇒ balanced and isoperimetric profile;
Cheeger inequalities + heat kernel estimates =⇒ mixing and escaping.

Observations
Extends to expanders with dmax

dmin
≤ C for βn ≤ Cdmin/ log n.

For βn � n proof fails: tmix becomes very large (traps).

Michele Salvi (Tor Vergata) RSTRE 11 / 16



Low Disorder

Theorem (Makowiec, S., Sun ’24)
Let G = Kn. There exists a constant C such that if

βn ≤ C
n

log n

then for every δ > 0 there exists c = c(δ) > 0 such that

EPωβn
(
c−1n1/2 ≤ diam(T ) ≤ c n1/2

)
≥ 1− δ .

Proof idea: Check the conditions of [Michaeli, Nachmias, Shalev].
Concentration inequalities =⇒ balanced and isoperimetric profile;
Cheeger inequalities + heat kernel estimates =⇒ mixing and escaping.

Observations
Extends to expanders with dmax

dmin
≤ C for βn ≤ Cdmin/ log n.

For βn � n proof fails: tmix becomes very large (traps).

Michele Salvi (Tor Vergata) RSTRE 11 / 16



High Disorder

Theorem (Makowiec, S., Sun ’24)
Let G = Kn. If

βn ≥ n4/3 log n

then for every δ > 0 there exists c = c(δ) > 0 such that

EPωβn
(
c−1n1/3 ≤ diam(T ) ≤ c n1/3

)
≥ 1− δ .

Sketch of the proof
Percolate p proportion of heaviest edges. Call C1(p) the giant component.

Key Lemma
There exists C > 0 such that w.h.p.

diam(T ) ≈ diam
(
T on C1(p0)

)
with p0 = 1

n + C log n
βn

.
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Proof Idea of Key Lemma

1 Let u, v ∈ C1(p) and suppose (u, v) is (p + ε)-closed. Then

Pωβn
(
(u, v) ∈ T

)
= w(u,v)R

ω
eff(u ↔ v)

≤ eβn(1−p−ε) · n e−βn(1−p) = n e−βnε

so if ε ≥ C log n
βn

, this probability becomes polynomially small.{
T on C1(p)

}
⊆ C1

(
p + ε

)
2 Vertices outside C1(p0) with p0 = 1

n + C log n
βn

“hit C1 fast” and do not
add much to the diameter.
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High Disorder with Lemma

Critical window of percolation for Erdös-Rényi random graph is

p =
1
n

+
λ

n4/3
, λ ∈ R.

If p is in the critical window, then w.h.p.
C1(p) is tree like (bounded number of cycles);
|C1(p)| = O(n2/3) ;
diam(C1(p)) ≈ |C1(p)|1/2 = O(n1/3) .

So for βn ≥ n4/3 log n

p0 =
1
n

+
C log n

βn
is in the critical window =⇒ diam(T ) = O(n1/3) .

�

Note: if βn < n4/3 then C1(p0) is not tree-like!
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Future Work

Conjecture
For G = Kn w.h.p.

diam(T ) ≈


n1/2, βn ≤ n

n(1−γ)/2, βn = n1+γ , 0 ≤ γ ≤ 1
3

n1/3, βn ≥ n4/3.

Idea
Show that on the slightly supercritical window

diam
(
T
) Key Lemma

≈ diam
(
T on C1

(
1
n + C log n

βn

))
??
≈

∣∣∣C1( 1
n + C log n

βn

)∣∣∣1/2 [DKLP14]
≈

(n2
βn

)1/2
.
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Thank you!
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