Random spanning trees in random environment

(joint work with Luca Makowiec and Rongfeng Sun, NUS)

Kolmogorov meets Turing, LUISS

Michele Salvi

University of Rome, Tor Vergata

May 14th, 2025

Uniform Spanning Tree

$$G = (V, E)$$
 connected graph

A spanning tree *T*: connected cycle-free subgraph of G

Uniform Spanning Tree

$$G = (V, E)$$
 connected graph

A spanning tree *T*: connected cycle-free subgraph of G

Definition

Given weights $w: E \to \mathbb{R}_+$, the *uniform spanning tree* (UST) is the random spanning tree \mathcal{T} on (G, w) such that

$$P^{w}(T=T)=\frac{1}{Z}\prod_{e\in T}w_{e}$$

with
$$Z = Z(w) := \sum_{T} \prod_{e \in T} w_e$$
.

Generating USTs

Naively Sampling

Generate all spanning trees and pick one according to its weight.

Generating USTs

Naively Sampling

Generate all spanning trees and pick one according to its weight.

UST on $(G, w) \leftrightarrow \text{Random Walks on } (G, w)$

Aldous-Broder Algorithm

Run a weighted random walk until all vertices are visited. Whenever a vertex is visited for the first time, add the edge to \mathcal{T} .

Wilson's Algorithm

Set $\mathcal{T} = \{v\}$ for some $v \in V$. Choose $u \notin \mathcal{T}$; run weighted loop erased random walk from u until touching \mathcal{T} ; add trajectory to \mathcal{T} .

Maximum Spanning Tree

Definition

Given weights $w: E \to \mathbb{R}_+$ all different, the maximum spanning tree (MST) is the (non-random) spanning tree T that maximizes

$$\sum_{e \in \mathcal{T}} w_e$$

Maximum Spanning Tree

Definition

Given weights $w: E \to \mathbb{R}_+$ all different, the maximum spanning tree (MST) is the (non-random) spanning tree T that maximizes

$$\sum_{e \in T} w_e$$

How to generate it?

Prim's Algorithm

Set $\mathcal{T} = \{v\}$ for some $v \in V$. Consider all edges joining \mathcal{T} to its complement and add the one with the largest weight. Iterate.

Kruskal Algorithm

Start from a forest of |V| isolated vertices. Add the edge of largest weight joining two distinct components of the current forest. Iterate.

Are the UST and the MST different?

Simulations on random 3-regular graph, $|V|=100000,\ w_{\rm e}=(\it U[0,1])^{-1}$ (by Luca Makowiec)

Are the UST and the MST different?

Simulations on random 3-regular graph, |V|=100000, $w_{\rm e}=(\mathit{U}[0,1])^{-1}$ (by Luca Makowiec)

On the complete graph $G = K_n$:

	UST	MST
Diameter	$n^{1/2}$	$n^{1/3}$
Scaling limit	$\frac{UST}{n^{1/2}} o Aldous' \ CRT$ [Aldous '91]	$rac{ extstyle MST}{n^{1/3}} ightarrow \mathcal{M}$ [Addario-B. et al. '17]

Diameter of UST

Theorem (Extension of Michaeli, Nachmias and Shalev '21)

Suppose (G, w) is

- 2 mixing: $t_{mix}(G, w) \leq n^{\frac{1}{2} \alpha};$
- $\underbrace{\sum_{t=0}^{t_{mix}}(t+1)\sup_{v\in V}p_t(v,v)\leq \theta}_{t}.$

Diameter of UST

Theorem (Extension of Michaeli, Nachmias and Shalev '21)

Suppose (G, w) is

- $\underbrace{\sum_{t=0}^{t_{mix}}(t+1)\sup_{v\in V}p_t(v,v)\leq \theta}_{t}.$

Then $\forall \varepsilon > 0$ exists $c = c(\varepsilon, D, \alpha, \theta)$ such that

$$P^{w}(c^{-1}n^{1/2} \leq diam(\mathcal{T}) \leq c n^{1/2}) \geq 1 - \varepsilon.$$

Diameter of UST

Theorem (Extension of Michaeli, Nachmias and Shalev '21)

Suppose (G, w) is

- 2 mixing: $t_{mix}(G, w) \leq n^{\frac{1}{2}-\alpha}$;
- $\underbrace{\sum_{t=0}^{t_{mix}}(t+1)\sup_{v\in V}p_t(v,v)\leq heta}_{t}.$

Then $\forall \varepsilon > 0$ exists $c = c(\varepsilon, D, \alpha, \theta)$ such that

$$P^{w}(c^{-1}n^{1/2} \leq diam(\mathcal{T}) \leq c n^{1/2}) \geq 1 - \varepsilon.$$

UST on "high-dimensional" graphs with elliptic weights have diameter $n^{1/2}$: Examples: complete graph, expanders, high-dimensional torus...

General weights

What happens if the weights are non-elliptic?

Theorem (Makowiec, S., Sun '23)

Let G = (V, E) with |V| = n be either

- an expander with max degree $\Delta < \infty$;
- a torus in d > 5.

Let w_e i.i.d. with μ such that $\mu(0,\infty)=1$.

General weights

What happens if the weights are non-elliptic?

Theorem (Makowiec, S., Sun '23)

Let G = (V, E) with |V| = n be either

- an expander with max degree $\Delta < \infty$;
- a torus in d > 5.

Let w_e i.i.d. with μ such that $\mu(0,\infty)=1$.

Then $\exists c > 0$ such that for all $\varepsilon > 0$

$$\mathbb{E}P^{w}\left(\frac{n^{1/2}}{(\varepsilon^{-1}\log n)^{c}} \leq diam(\mathcal{T}) \leq (\varepsilon^{-1}\log n)^{c}n^{1/2}\right) \geq 1 - \varepsilon.$$

where \mathbb{E} is the expectation w.r.t. w.

Sketch of proof

- Perform percolation on G with parameter $p = \mu(\frac{1}{A}, A)$, where A is large enough so that p is close to 1.
- ② Obtain G' conditioning on the realization of T on closed edges:
 - ▶ delete closed edges not in T;
 - ► contract closed edges in T.

ullet Verify (G', w') is balanced, mixing and escaping (use isoperimetric constant/profile) and apply [Michaeli, Nachmias, Shalev] with polylogarithmic parameters to obtain

$$\operatorname{diam}(G') \approx |V'|^{1/2} \approx n^{1/2}$$
.

- Uncontract to obtain diameter bounds on G:
 - ▶ Lower bound: Paths in *G* can only get longer.
 - ▶ Upper bound: Each vertex in G' consists of at most log n contracted vertices of $G \Longrightarrow$ paths in G are at most log n times longer.

ullet Verify (G', w') is balanced, mixing and escaping (use isoperimetric constant/profile) and apply [Michaeli, Nachmias, Shalev] with polylogarithmic parameters to obtain

$$\operatorname{diam}(G') \approx |V'|^{1/2} \approx n^{1/2}.$$

- Uncontract to obtain diameter bounds on G:
 - ▶ Lower bound: Paths in *G* can only get longer.
 - ▶ Upper bound: Each vertex in G' consists of at most log n contracted vertices of $G \Longrightarrow \text{paths in } G$ are at most log n times longer.

Counterexample on complete graph

Take $G = K_n$ and μ heavy tailed enough. Then

$$\mathbb{E} P^{w} \Big(\mathcal{T} = \mathsf{MST} \Big) \xrightarrow{n o \infty} 1$$
 .

In particular diam(\mathcal{T}) $\approx n^{1/3}$.

Idea: weight of 2nd heaviest spanning tree is "super exponentially" smaller than MST.

Random Spanning Tree in Random Environment

Definition

Let G = (V, E) connected graph.

Let $(\omega_e)_{e\in E}$ i.i.d. Unif([0,1]) and let $\beta\geq 0$. Assign weights

$$w_e = e^{\beta \omega_e}$$
.

The Random Spanning Tree in Random Environment (RSTRE) has law

$$P^{\omega}_{eta}(\mathcal{T}=\mathcal{T}) = rac{1}{Z^{\omega}_{eta}} \prod_{e \in \mathcal{T}} \mathrm{e}^{eta \omega_e} \; .$$

Random Spanning Tree in Random Environment

Definition

Let G = (V, E) connected graph.

Let
$$(\omega_e)_{e\in E}$$
 i.i.d. $Unif([0,1])$ and let $\beta\geq 0$. Assign weights $w_e=\mathrm{e}^{\beta\omega_e}$.

The Random Spanning Tree in Random Environment (RSTRE) has law

$$P^{\omega}_{eta}(\mathcal{T}=\mathit{T}) = rac{1}{Z^{\omega}_{eta}} \prod_{e \in \mathit{T}} \mathrm{e}^{eta \omega_e} \,.$$

- CASE $\beta = 0$ (Weights deterministic, Tree random) RSTRE is the UST. For $G = K_n$ diameter $n^{1/2}$.
- CASE $\beta = \infty$ (Weights random, Tree deterministic) RSTRE is the MST. For $G = K_n$ diameter $n^{1/3}$.

Can we interpolate by taking $\beta = \beta_n$?

Low Disorder

Theorem (Makowiec, S., Sun '24)

Let $G = K_n$. There exists a constant C such that if

$$\beta_n \le C \frac{n}{\log n}$$

then for every $\delta > 0$ there exists $c = c(\delta) > 0$ such that

$$\mathbb{E} P^{\omega}_{\beta_n}\left(c^{-1}n^{1/2} \leq diam(\mathcal{T}) \leq c \ n^{1/2}\right) \geq 1 - \delta$$
.

Low Disorder

Theorem (Makowiec, S., Sun '24)

Let $G = K_n$. There exists a constant C such that if

$$\beta_n \le C \frac{n}{\log n}$$

then for every $\delta > 0$ there exists $c = c(\delta) > 0$ such that

$$\mathbb{E} P^{\omega}_{\beta_n}\left(c^{-1}n^{1/2} \leq diam(\mathcal{T}) \leq c \ n^{1/2}\right) \geq 1 - \delta$$
.

Proof idea: Check the conditions of [Michaeli, Nachmias, Shalev].

- Cheeger inequalities + heat kernel estimates ⇒ mixing and escaping.

Low Disorder

Theorem (Makowiec, S., Sun '24)

Let $G = K_n$. There exists a constant C such that if

$$\beta_n \le C \frac{n}{\log n}$$

then for every $\delta > 0$ there exists $c = c(\delta) > 0$ such that

$$\mathbb{E} P^{\omega}_{\beta_n}\left(c^{-1}n^{1/2} \leq diam(\mathcal{T}) \leq c \ n^{1/2}\right) \geq 1 - \delta$$
.

Proof idea: Check the conditions of [Michaeli, Nachmias, Shalev].

- Concentration inequalities ⇒ balanced and isoperimetric profile;
- Cheeger inequalities + heat kernel estimates ⇒ mixing and escaping.

Observations

- Extends to expanders with $\frac{d_{\max}}{d_{\min}} \le C$ for $\beta_n \le C d_{\min} / \log n$.
- For $\beta_n \gg n$ proof fails: t_{mix} becomes very large (traps).

High Disorder

Theorem (Makowiec, S., Sun '24)

Let
$$G = K_n$$
. If

$$\beta_n \geq n^{4/3} \log n$$

then for every $\delta > 0$ there exists $c = c(\delta) > 0$ such that

$$\mathbb{E} P^{\omega}_{\beta_n}\left(c^{-1}n^{1/3} \leq \operatorname{diam}(\mathcal{T}) \leq c \ n^{1/3}\right) \geq 1 - \delta$$
 .

High Disorder

Theorem (Makowiec, S., Sun '24)

Let
$$G = K_n$$
. If

$$\beta_n \geq n^{4/3} \log n$$

then for every $\delta > 0$ there exists $c = c(\delta) > 0$ such that

$$\mathbb{E} P^{\omega}_{\beta_n}\left(c^{-1}n^{1/3} \leq diam(\mathcal{T}) \leq c n^{1/3}\right) \geq 1 - \delta$$
.

Sketch of the proof

Percolate p proportion of heaviest edges. Call $C_1(p)$ the giant component.

Key Lemma

There exists C > 0 such that w.h.p.

$$\operatorname{\mathsf{diam}}(\mathcal{T}) pprox \operatorname{\mathsf{diam}}ig(\mathcal{T} \ \mathsf{on} \ \mathcal{C}_1(p_0)ig) \qquad \mathsf{with} \ \ p_0 = rac{1}{n} + rac{C \log n}{eta_n} \,.$$

Proof Idea of Key Lemma

1 Let $u, v \in C_1(p)$ and suppose (u, v) is $(p + \varepsilon)$ -closed. Then

$$\begin{split} P^{\omega}_{\beta_n}\big((u,v)\in\mathcal{T}\big) &= w_{(u,v)}R^{\omega}_{\text{eff}}(u\leftrightarrow v) \\ &\leq \mathrm{e}^{\beta_n(1-p-\varepsilon)}\cdot n\,\mathrm{e}^{-\beta_n(1-p)} = n\,\mathrm{e}^{-\beta_n\varepsilon} \end{split}$$

so if $\varepsilon \geq C \frac{\log n}{\beta_n}$, this probability becomes polynomially small.

$$\{\mathcal{T} \text{ on } \mathcal{C}_1(p)\} \subseteq \mathcal{C}_1(p+arepsilon)$$

② Vertices outside $C_1(p_0)$ with $p_0 = \frac{1}{n} + \frac{C \log n}{\beta_n}$ "hit C_1 fast" and do not add much to the diameter.

High Disorder with Lemma

Critical window of percolation for Erdös-Rényi random graph is

$$p = \frac{1}{n} + \frac{\lambda}{n^{4/3}}, \qquad \lambda \in \mathbb{R}.$$

If p is in the critical window, then w.h.p.

- $C_1(p)$ is tree like (bounded number of cycles);
- $|C_1(p)| = O(n^{2/3})$;
- $\operatorname{diam}(\mathcal{C}_1(p)) \approx |\mathcal{C}_1(p)|^{1/2} = O(n^{1/3})$.

High Disorder with Lemma

Critical window of percolation for Erdös-Rényi random graph is

$$p = \frac{1}{n} + \frac{\lambda}{n^{4/3}}, \qquad \lambda \in \mathbb{R}.$$

If p is in the critical window, then w.h.p.

- $C_1(p)$ is tree like (bounded number of cycles);
- $|C_1(p)| = O(n^{2/3})$;
- $\operatorname{diam}(\mathcal{C}_1(p)) \approx |\mathcal{C}_1(p)|^{1/2} = O(n^{1/3})$.

So for $\beta_n \ge n^{4/3} \log n$

$$p_0 = \frac{1}{n} + \frac{C \log n}{\beta_n}$$
 is in the critical window \implies diam $(T) = O(n^{1/3})$.

Note: if $\beta_n < n^{4/3}$ then $C_1(p_0)$ is not tree-like!

Future Work

Conjecture

For $G = K_n$ w.h.p.

$$diam(\mathcal{T}) \approx \begin{cases} n^{1/2}, & \beta_n \leq n \\ n^{(1-\gamma)/2}, & \beta_n = n^{1+\gamma}, & 0 \leq \gamma \leq \frac{1}{3} \\ n^{1/3}, & \beta_n \geq n^{4/3}. \end{cases}$$

Future Work

Conjecture

For $G = K_n$ w.h.p.

$$\operatorname{diam}(\mathcal{T}) \approx \begin{cases} n^{1/2}, & \beta_n \leq n \\ n^{(1-\gamma)/2}, & \beta_n = n^{1+\gamma}, & 0 \leq \gamma \leq \frac{1}{3} \\ n^{1/3}, & \beta_n \geq n^{4/3}. \end{cases}$$

Idea

Show that on the slightly supercritical window

$$\begin{split} \text{diam} \big(\mathcal{T} \big) &\overset{\text{Key Lemma}}{\approx} \text{diam} \Big(\mathcal{T} \text{ on } \mathcal{C}_1 \Big(\frac{1}{n} + \frac{C \log n}{\beta_n} \Big) \Big) \\ &\overset{??}{\approx} \qquad \left| \mathcal{C}_1 \Big(\frac{1}{n} + \frac{C \log n}{\beta_n} \Big) \right|^{1/2} &\overset{[DKLP14]}{\approx} \Big(\frac{n^2}{\beta_n} \Big)^{1/2} \,. \end{split}$$

